Understanding Regression Discontinuity Designs As Observational Studies

نویسنده

  • Jasjeet S. Sekhon
چکیده

Thistlethwaite and Campbell (1960) proposed to use a “regression-discontinuity analysis” in settings where exposure to a treatment or intervention is determined by an observable score and a fixed cutoff. The type of setting they described, now widely known as the regression discontinuity (RD) design, is one where units receive a score, and a binary treatment is assigned according to a very specific rule. In the simplest case, all units whose score is above a known cutoff are assigned to the treatment condition, and all units whose score is below the cutoff are assigned to the control (i.e., absence of treatment) condition. Thistlethwaite and Campbell insightfully noted that, under appropriate assumptions, the discontinuity in the probability of treatment status induced by such an assignment rule could be leveraged to learn about the effect of the treatment at the cutoff. Their seminal contribution led to what is now one of the most rigorous non-experimental research designs across the social and biomedical sciences. See Cook (2008), Imbens and Lemieux (2008) and Lee and Lemieux (2010) for reviews, and the recent volume edited by Cattaneo and Escanciano (2017) for recent specific applications and methodological developments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approaches to the Estimation of the Local Average Treatment Effect in a Regression Discontinuity Design

Regression discontinuity designs (RD designs) are used as a method for causal inference from observational data, where the decision to apply an intervention is made according to a 'decision rule' that is linked to some continuous variable. Such designs are being increasingly developed in medicine. The local average treatment effect (LATE) has been established as an estimator of the intervention...

متن کامل

Testing the Accuracy of Regression Discontinuity Analysis Using Experimental Benchmarks

Regression discontinuity (RD) designs enable researchers to estimate causal effects using observational data. These causal effects are identified at the point of discontinuity that distinguishes those observations that do or do not receive the treatment. One challenge in applyingRD in practice is that datamay be sparse in the immediate vicinity of the discontinuity. Expanding the analysis to ob...

متن کامل

A randomized experiment comparing random and cutoff-based assignment.

In this article, we review past studies comparing randomized experiments to regression discontinuity designs, mostly finding similar results, but with significant exceptions. The latter might be due to potential confounds of study characteristics with assignment method or with failure to estimate the same parameter over methods. In this study, we correct the problems by randomly assigning 588 p...

متن کامل

Running head: MULTIPLE RATING-SCORE REGRESSION DISCONTINUITY Regression discontinuity designs with multiple rating-score variables

In the absence of a randomized control trial, regression discontinuity (RD) designs can produce plausible estimates of the treatment effect on an outcome for individuals near a cutoff score. In the standard RD design, individuals with rating scores higher than some exogenously determined cutoff score are assigned to one treatment condition; those with rating scores below the cutoff score are as...

متن کامل

Regression Discontinuity Designs in Epidemiology: Causal Inference Without Randomized Trials

When patients receive an intervention based on whether they score below or above some threshold value on a continuously measured random variable, the intervention will be randomly assigned for patients close to the threshold. the regression discontinuity design exploits this fact to estimate causal treatment effects. in spite of its recent proliferation in economics, the regression discontinuit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016